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ABSTRACT
An  automated  grain  sizing  (AGS)  procedure  which  measures  grain  size 

distributions from digital images was tested to see if it  could be used as an acceptable 
alternative to standardized grid and random-walk pebble counts for measuring grain size 
information in gravel-bed rivers.  This was accomplished using data from a field study in 
which multiple grid-type pebble counts, random-walk pebble counts, and digital images of 
the same sediment were all collected on two rivers.  The image processing methodology 
was first tested and optimized for a control dataset in which all particle sizes in the image 
were known.  The image processing methodology was then applied to the experimental 
field data to examine the variability of the method and accuracy of the method compared to 
the  grid  and random-walk  pebble  counts.  Results  showed that  the  AGS method,  1) 
produced less at-site variability from sample to sample when compared to the grid and 
random-walk pebble counts; 2) produced grain size statistics that were more accurate in 
relation to the grid count statistics than the random-walk method; and 3) was able to easily 
measure small scale spatial variations in grain size distributions.  

INTRODUCTION
Studies in the fluvial environment typically require geomorphologists, ecologists, 

and engineers alike all to characterize the sediment found in a river by obtain statistics 
from  a  cumulative  grain  size  distribution  (GSD)  curve.   This  is  most  traditionally 
accomplished through sieving of bulk samples of riverbed sediment.  With this method, 
field samples are brought back to the laboratory for analysis or are sieved in-situ, and a 
percent finer frequency-by-weight GSD curve is developed from the results.  While sieving 
is a conventional and accepted method, it often becomes impractical for sampling larger 
size particles such as those found in the surface layer of gravel-bed rivers.  This is because 
the large size and size range of particles found in such rivers require that the weight of the 
largest stone in the sample not exceed 1% of the total weight of the sample for 1% accuracy 
(Church et al. 1987).  This can present practical limitations with sieving, especially when 
multiple samples at remote sites are required. 

Grid and random-walk pebble counts (Wolman 1954, Bunte and Abt 2001) are 
acceptable alternatives for sampling grains in  gravel to  cobble size sediments.  These 
methods both require that an operator sample 100 or more grains over a specified area of 
the river bed and physically measure the axes of the individual grains.  These methods 
produce  percent  finer,  frequency-by-number GSDs  that  are  directly  comparable  to 
frequency-by-weight sieve  analysis  GSDs (Wolman 1954,  Kellerhals  and  Bray  1971, 
Church et al. 1987).  However, these two methods do present some inherent drawbacks; 
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namely, both methods are intrusive in that they disturb the sedimentary structure of the 
river bed, take considerable field effort (1 hour of field time per sample + 1 hour of 
processing time in the laboratory), and blend natural spatial variation in the GSD due to the 
size of the area required for the sample.  In addition, the more commonly used random-
walk method is known to produce results with considerable variability and operator bias 
(Bunte and Abt 2001).  

Another method that has developed with the advance of digital technology uses 
image analysis  procedures to  automatically extract grain size information from digital 
images.  This new method, termed Automated Grain Sizing (AGS), has shown promise as a 
viable method for measuring fluvial gravel and larger size sediment (Butler et al. 2001, 
Sime and Ferguson 2003, and Graham et al. 2005a,b).  The goal of the AGS method is to 
automatically identify and measure all of the individual grains in a digital snap-shot of the 
riverbed and use this information to produce GSD statistics.  While the AGS method is 
currently a non-standardized method, some of its potential advantages are: 1) that field time 
can be reduced to the time it takes to obtain a snap-shot of the bed (this bringing the total 
time required to sample and obtain statistics down to 15≈ min per sample); 2) that grain 
size information can be obtained non-intrusively so that the sedimentary structure of the 
bed is left intact; and 3) that the spatial variation in particle grain size exhibited at  a 
particular study site can be captured due to the smaller sampling area needed by the AGS 
method.

Recent AGS studies have shown that grains can be correctly identified in images as 
they lie if proper lighting and image processing techniques are followed (Butler et. al. 
2001, Graham et al. 2005a).  Additionally, Graham et al. (2005b) has shown that AGS 
derived area-by-number grain size distributions are acceptably comparable to manually 
measured paint-and-pick, area-by-number GSDs with only some slight biasing in the upper 
and lower percentiles.  The study presented in this paper further explores the potential of 
AGS methods for obtaining grain size statistics.  The objective is to determine if AGS can 
practically be used as an acceptable alternative to the standardized grid and random-walk 
pebble counts that are typically used for obtaining grain size information in coarse grained 
rivers. 

This objective is addressed through the analysis of a field study in which multiple 
grid pebble counts, random-walk pebble counts, and digital images of the same sediment 
were all collected on two rivers.  In the analysis, the AGS image processing methodology is 
tested and optimized, the variability in the grain size statistics derived from each of the 
three individual methods is assessed, and a direct comparison of the grain size statistics 
derived from the three methods is made.

DATA COLLECTION
Data was collected at  two sites.  Site 1,  was an exposed fluvial  deposit  at  the 

confluence of Cedar Creek and the West Frio River, and site 2 was and exposed bar on the 
North  Llano  River.  Table  1,  exhibits  the  average  grain  size  statistics,  shape  factor, 
sphericity, and Zingg classification for the particles at sites 1 and 2.  The predominant grain 
shapes at site one were discs and spheres.  Approximately half of the site 2 grains

Table 1  Average Grain Size Statistics and Particle Shape Descriptors for Data Collection 
Sites
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Ψ units Site 1 Site 2
D16 3.28 3.55
D50 4.45 4.53
D84 5.30 5.72
Shape Factor 0.55 1.89
Sphericity 0.66 1.49
Zingg Classification 0.71 0.70

Average Value for Each Site

were discs while the other shapes (blades, rods, and spheres) possessed nearly equal shares 
of the remaining fifty percent.  According to the grain size statistics, the particles at the 
sites 1 and 2 consisted mainly of medium to very coarse gravel.

Description of Data Collection Procedure
At  each  site  a  rectangular  sampling  area  consisting  of  an  approximately 

homogenous grain size mixture was marked out.  Within this sampling area, five subplots 
of equal size were laid out as the sampling region for the five grid counts.  Grid counts 
were collected using a sampling frame consisted of a wood frame with inner dimensions of 
60 x 60 cm and slightly exposed nail heads placed at 10 cm spacing around the top of the 
frame (Bunte and Abt 2001).  The grid for each site was then constructed on the frame by 
wrapping string around the nails such that the resulting grid spacing was

€ 

>dmax , where 

€ 

dmax  was the largest clast present in the sampling region.  The samples were collected at 
evenly spaced intervals  of 8 cm by moving the frame along non-intersecting transects 
within each subplot,  and the particle located beneath each intersecting grid point  was 
sampled (Fig. 1A).  The long, intermediate, and short axis, or a-axis, b-axis, and c-axis of 
each particle was measured to the nearest 1/8 in (≈ 3 mm).

Four images of the bed were taken within the five subplots at each site to constitute 
an AGS sample of the same sediment as the grid counts.  Images were taken parallel to the 
ground from a height of approximately 1.5 to 2 m with a handheld 7.1 megapixel Canon 
PowerShot A550.  A rectangular 4:3 frame with inner dimensions of 4 ft x 3ft lying on top 
of the bed was also captured within each image.  Metal pins separated by known distances 
that protruded from the frame into the image allowed for the pixel to physical length scale 
to be set while minimizing the size of the scaling devices, such as a ruler, needing to be 
placed in the image (Graham et. al 2005b) (Fig. 1B).

Five random-walk pebble counts were also made along transects that covered the 
extent of the larger sampling area.  Spacing for the random-walk counts was set to one 
stride, and particles were chosen by the operator averting his eyes, placing his finger at the 
toe of his boat, and choosing the particle that fell directly under his finger tip.  As with the 
grid counts, the a,  b, and c-axes of each particle was measured to the nearest 1/8 in (≈ 3 
mm).  For both grid and random-walk counts, it was also noted whether or not the c-axis of 
the sampled particle was oriented perpendicular to the bed surface.  The percentage of 
particles for which the c-axis was found to be perpendicular to the bed was 81% at site 1 
and 83% at site 2.
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A                                                                        B
Fig. 1.  Images of Data Collection.  A shows operators conducting a grid count sample, and B is a photo 
displaying the frame with metal pins used as the scaling device for the AGS method.

IMAGE PROCESSING PROCEDURES FOR AGS
The determination of a grain size distribution from a digital image can be organized 

into three steps: 1) identification of the particles, 2) measurement of particle dimensions, 
and 3) numerical sieving.  Identification and measurement of the particles include the 
following image preprocessing and processing steps: 1) crop the image, 2) convert the 
image to an 8-bit gray-scale, 3) apply a median filter, 4) threshold the image, 5) apply a 
morphological close, 6) watershed the image, and 7) fit ellipses to the particles in the image 
(Fig. 2).  The image analysis software then determines the b-axis of each ellipse, and the 
resulting b-axis measurements are converted from pixels to millimeters via a scale that was 
placed on the streambed surface before the photograph was taken.  Numerical sieving 
entails organizing the particles into their respective sieve size classes, which allows the 
percent finer to be computed and a grain size distribution curve to be plotted.

The ellipses representing the size and shape of the particles are two-dimensional; 
therefore, the long and short axes of these ellipses are considered to be the a and b axes, 
respectively, with the  b-axis representing the particle size.  For ease of analysis, particle 
dimensions are often referred to in ψ  units, where ψ  is defined as

€ 

ψ=log2(di) =
ln(di)
ln(2) (1)

with id  representing the minor axis dimension of a particle.  The following formulas can 
be used to convert from millimeters to ψ  units and vice versa:

i
ii dd ψψ 2 and ),ln(4427.1 == (2)

By nature, the AGS method produces an areal frequency-by-number grain size 
distribution.  This type of distribution is not directly comparable to sieved frequency-by-
weight  distributions,  or  grid  frequency-by-number distributions,  because  it  does  not 
account for the greater percentage of weight or area occupied by  the larger particles. 
Rather it treats all particle sizes as having an equal effect on the total grain size distribution. 
Hence the method is biased towards the smaller particles.  To make the AGS samples 
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comparable to grid and random-walk counts, the number of particles contained within a 
particular size fraction as determined from the AGS method must be weighted with the 

square of the size fraction diameter, 2
id  (Kellerhals and Bray 1971).  This is formulized 

as follows,

2)()( iininA dPP = (3)

where inAP )(  is the adjusted number of particles in size class  i,  inP )(  is the original 

number of particles in size class  i, and id  is the diameter of the particle in size class  i. 
This weighting function accounts for the larger particles occupying a greater percentage of 
the sampling area than the smaller particles.

    
A        B

    
C        D

E
Fig. 2.  Image Preprocessing and Processing.  A is a cropped image converted to an 8-bit gray-scale image, 
B shows  the  image  after  applying  a  median  filter  of  5  pixels,  C is  the  thresholded  image,  D is  the 
thresholded image after watershedding, and E is the image after ellipses have been fit to each particle.  (A 
morphological  close  is  often  not  detectable  to  the  eye  and  has  been  excluded  from  the  visual 
representation.)
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Optimization of the AGS Image Processing Procedures
Before comparing the AGS method to the grid and random-walk pebble counts, the 

image processing procedures used in the AGS method must first  be optimized to best 
identify the grains in the image.  Therefore, the above methodology was optimized by: 1) 
determining the optimal median filter value, 2) determining whether or not a histogram 
equalization  (a.k.a.  Auto  Levels)  function  should  be  applied  to  the  images;  and  3) 
determining whether or not the image background should be subtracted from the original 
image before thresholding the image.  All image analysis functions were completed using 
ImageJ, a  free image analysis  software developed at  the National Institutes  of  Health 
(Abramoff et al. 2004).

In order to discern the effects of the previously mentioned techniques, a control 
dataset containing the true sizes of the particles in the image was needed to which the 
various AGS results could be compared.  Therefore, as a control, the minor axes (or b-axes) 
of all visible particles in images from both sites were manually measured within the framed 
region using ImageJ.  In this way, datasets of approximately 2000 particles per image were 
developed as controls for the process optimization.

Applying a  median filter to  each image improved both the weighted and non-
weighted GSD approximations.  Optimum values of the radius used in the median filter 
varied slightly between images, with an average value of 5 pixels producing the best results 
(Fig 3).  It should be noted that optimum pixel radius values may vary depending on the 
size of the particles and the pixel-to-physical length scale.  Higher pixel to physical length 
scales and larger particles might benefit from median filter values larger than 5 pixels, 
whereas optimal results for smaller particles and pixel to physical length scales might be 
obtained with smaller radius values.

Subtracting the background from the original image further improved the GSD 
approximation and was accomplished with the so-called “roller ball radius,” a localized 
neighborhood operation function used in ImageJ for background subtraction.  The optimum 
background subtraction value was determined to be ≈ 15 (Fig. 3). Background subtraction 
should  be  conducted  after  the  application  of  the  median filter.   A noted  benefit  of 
subtracting the background from the image was that, if present, shadow effects in the image 
could be substantially reduced.  However, it was determined that the Auto Levels function 
had no noticeable effect on the GSD results; it  was therefore excluded from the image 
processing procedures.

  
A     B
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Fig. 3.  Effect of Median Filter and Background Subtraction on GSD Results.  A displays the non-weighted 
results, and B shows the weighted results.
Manual Thresholding

While the goal of the AGS method is to automatically detect the grains in the image 
with minimum user input, it was noticed that particles in images can sometime be better 
identified if  the image threshold value is  set  manually rather than automatically.   This 
process takes little time in ImageJ and users can interactively see and judge in real-time 
how various threshold values might effect the identification of particles.  However, the use 
of an operator set threshold value does introduce some subjectivity. To quantify this effect, 
the manual threshold value was varied in steps of five beginning below and ending above 
the auto threshold value.  These upper and lower values were chosen on the basis that an 
operator would not  reasonably pick a  higher or lower value (Fig 4).  Fig. 5  shows a 
comparison of the grain size statistics based on the manual and auto threshold value in 
relation to the true grain size statistics derived from the GSD of manually measured image 
grains.  No clear pattern for optimizing the manual thresholding technique was found. 
Therefore, the auto thresholding value was selected as the standard.  The auto thresholding 
value was never optimum, but the results of the project indicate that it is sufficient. 

     
A   B
Fig. 4.  Visual Example of Thresholding Range.  A shows an image after applying a thresholding value of 
210, and B displays the same image after applying a thresholding value of 230.

     
A     B
Fig. 5.  Grain Size Statistics vs. Thresholding Value.  A exhibits the non-weighted results, and B shows the 
weighed results.
COMPARISON OF AGS METHOD WITH STANDARD METHODS
Development of the AGS Sample Data
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The AGS samples were collected by taking four photographs within each of the 5 
subsections in  the  visually  identified  homogenous sampling region.   Each photo  was 
initially analyzed as a separate sample.  However, in this process it was observed that slight 
spatial variation in grain sizes did exist within the grid sampling subsections.  Because the 
smaller  sampling footprint  of  the  AGS method was  more  sensitive  to  these  spatial 
variations than the other two methods, the four photos taken in  each subsection were 
combined into a single sample to make them more comparable to the grid counts.  This 
resulted in 5 AGS samples there were comparable to the grid counts for each site.  For 
simplification of terminology, the AGS results combined for comparison with the grid 
method are hereafter referred to as 1AGS .  To make the AGS results comparable to the 
random-walk data, 1 image from each of the 5 subsections was randomly selected and the 
results from the 5 images were combined to form a single AGS sample comparable to a 
random-walk pebble count sample.  This random photo selection within each subsection 
was conducted 5 separate times, resulting in 5 samples per site.  The AGS results combined 
for comparison to the random-walk method are referred to as 2AGS , and results presented 
from this point onward reflect the combined AGS data.  All particles with a b-axis less than 
0.25 in (6.35 mm) were truncated in all grid, random-walk, and AGS samples.

Variation within Each Method
A relevant question to ask in terms of the quantifying the accuracy of the AGS 

method is how much variation from measurement to measurement can we expect there to 
be for each method in a homogenous patch of riverbed sediment mixture?  In order for the 
AGS method to be considered viable, the variation it produces should be as small as or less 
than that of the standard methods.

To examine this variation, the grain size percentiles 5D , 16D , 50D , 84D , 90D , 

and 95D  were determined for each sample.  (For example, 50D  is the grain size for which 
50% of the material is finer by weight.)  The mean for each percentile category was then 
computed for each method, and the difference between all combinations of the percentiles 
for each sample was computed.  An example of the combination for the five grid samples 
taken at a site is as follows: AD −5 – BD −5 , AD −5 – CD −5 ,…, DD −5 – ED −5 ; AD −16 –

BD −16 , AD −16 – CD −16 , …,  DD −16 – ED −16 ; … (note that the letters correspond to 
the five subsections within the greater sampling area).  These results were used to compute 
the mean of the variation and the maximum observed variation for each method.  The 
mean, mean of the variation, and the maximum variation for each method are displayed in 
Table 2.  

The mean AGS percentiles 5D , 16D , and 50D  lie between the means for the grid 
and random walk methods but are lower than both methods for the upper percentiles, 

84d≥ .   This  is  probably  due to  slight  over-segmentation of  the  particles  during  the 
watershed operation.   However,  the  mean variation  and maximum variation for  each 
percentile are smaller than those of the random-walk and grid methods.  (Exception: the 
maximum variation of the  95D  percentile for the random-walk at site two is  ψ01.0  

lower than 2AGS .)  This shows that the AGS method produced repeatable results that had 
less at-site  variation than the grid and random-walk  pebble  counts  for  the  two rivers 
examined.  Initial observations also suggest that the AGS method produced reasonably 
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accurate grain size statistics.  The accuracy of the method in relation to the other two 
sampling methods will be discussed further in the following section.

Table 2  Grain Size Statistic Comparison Within Each Method Using Combined AGS Data

  D5 D16 D50 D84 D90 D95

Grid
• Mean 2.73 3.32 4.44 5.49 5.73 6.03
• Mean Variation 0.19 0.32 0.18 0.23 0.23 0.14
• Max Variation 0.24 0.34 0.22 0.28 0.27 0.18

Random-walk
• Mean 3.38 3.80 4.71 5.57 5.81 6.09
• Mean Variation 0.14 0.13 0.12 0.27 0.31 0.30
• Max Variation 0.15 0.15 0.15 0.32 0.41 0.40

AGS1

• Mean 3.14 3.64 4.52 5.38 5.61 5.89
• Mean Variation 0.05 0.08 0.10 0.09 0.10 0.08
• Max Variation 0.06 0.09 0.15 0.11 0.14 0.13

AGS2

• Mean 3.14 3.64 4.53 5.39 5.62 5.89
• Mean Variation 0.02 0.04 0.06 0.06 0.08 0.05
• Max Variation 0.04 0.07 0.11 0.10 0.13 0.08

Grid
• Mean 2.81 3.62 4.64 5.73 5.96 6.30
• Mean Variation 0.09 0.16 0.23 0.20 0.21 0.36
• Max Variation 0.11 0.25 0.27 0.20 0.30 0.33

Random-walk
• Mean 3.46 3.88 4.85 5.84 6.05 6.39
• Mean Variation 0.19 0.21 0.08 0.08 0.09 0.06
• Max Variation 0.20 0.34 0.11 0.12 0.10 0.06

AGS1

• Mean 3.20 3.74 4.67 5.59 5.83 6.08
• Mean Variation 0.05 0.06 0.09 0.12 0.11 0.15
• Max Variation 0.07 0.09 0.11 0.15 0.13 0.19

AGS2

• Mean 3.19 3.73 4.66 5.59 5.84 6.12
• Mean Variation 0.01 0.01 0.02 0.03 0.02 0.04
• Max Variation 0.01 0.02 0.02 0.04 0.03 0.07

Grain Size Statistic

Site 1

Site 2

Ψ units

Variation Among Methods and Accuracy of the AGS Method
The comparison among the methods was done similarly to the comparison within 

each method.  The percentiles 5D , 16D , 50D , 84D , 90D , and 95D were determined for 
each sample, and the difference between every combination of the percentiles between each 
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sampling method was computed.  For example, the difference between the five grid and 
random-walk  (RW)  samples  at  a  site  were  calculated  as  follows: GridAD −−5 –

walkRandomAD −−−5 , GridAD −−5 – walkRandomBD −−−5 ,…, GridED −−5 –

walkRandomED −−−5 ; GridAD −−16 – walkRandomAD −−−16 , GridAD −−16 –

walkRandomBD −−−16 ,…, GridED −−16 – walkRandomED −−−16 ;  …  .   The  mean  of  the 
variation and the maximum variation between each method is listed in Table 3.  

For the purposes of describing the accuracy of the AGS method, we consider the 
grid method as the standard for the comparison.  Fig. 6 and 7 visually show that the grain 
size statistics produced by the AGS method are closer than those of the random-walk 
method to the grid count statistics for every percentile category, except for 95D  on site 2. 
This can be seen by comparing the values of the computed mean variation between each 
method (Table 3).  While the AGS method does a better overall job of matching the grid 
count data than the random walk data, the actual AGS mean variation percentile values are 
closer to those of the random-walk counts than they are to the grid counts for the lower 
percentiles, 16D≤ , but are closer to the grid count values for the upper percentiles, 16D>
.

Also, the maximum variation between both the 1) random-walk and AGS method 
(RW – 2AGS ), and 2) the grid and AGS method (Grid – 1AGS ), are smaller than the 
maximum variation between the random-walk and grid counts (RW – Grid); however, the 
maximum variation for percentiles D90 and D95 for Grid – 1AGS  were higher than those of 
RW – Grid for site 2.  Nevertheless, the results indicate that the variation between the AGS 
and the other two methods is as small as the variation between the grid and random-walk 
methods.  Therefore, it can be inferred that the AGS method is more accurate than the 
random-walk method, if considering the grid count method to produce true statistics.

Another type of comparison between the methods was made by constructing one-
to-one plots (Fig. 7).  The means of percentiles 5D , 16D , 50D , 84D , 90D , and 95D  are 
represented by  slash  markings, and  the  error  bars  correspond to  the  maximum and 
minimum of the variation for each percentile.  This type of graph illustrates the equivalence 
between the methods.  The plots in Fig. 7 indicate that the variations between the AGS 
method and the other two methods are as small as the variations between the grid and 
random walk methods.  Therefore, it can be concluded that the AGS method approximates 
grain size distributions as well as the standard grid and random walk methods.  However, 
while the AGS method tends to match the  50D  percentile, it overestimates the particle 
sizes at the lower tail of the distributions and underestimates the particles sizes at the upper 
tail.

Table 3  Grain Size Statistic Comparison Between Each Method Using Combined AGS 
Data
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  D5 D16 D50 D84 D90 D95

RW - Grid
• Mean Variation 0.68 0.49 0.31 0.15 0.13 0.15
• Max Variation 0.38 0.47 0.27 0.40 0.59 0.62

RW - AGS2

• Mean Variation 0.28 0.18 0.22 0.25 0.28 0.29
• Max Variation 0.18 0.23 0.17 0.36 0.44 0.45

Grid - AGS1

• Mean Variation -0.42 -0.35 -0.10 0.08 0.06 0.12
• Max Variation 0.28 0.37 0.27 0.32 0.29 0.17

RW - Grid
• Mean Variation 0.68 0.23 0.20 0.10 0.08 0.08
• Max Variation 0.26 0.47 0.41 0.31 0.36 0.40

RW - AGS2

• Mean Variation 0.29 0.16 0.20 0.25 0.24 0.29
• Max Variation 0.21 0.34 0.13 0.14 0.12 0.11

Grid - AGS1

• Mean Variation -0.38 -0.17 -0.07 0.10 0.06 0.15
• Max Variation 0.15 0.22 0.35 0.30 0.23 0.52

Grain Size Statistic

Site 1

Site 2

Ψ units
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Fig. 6.  Graphical Comparison Between Methods by Utilizing Grain Size Distribution Curves.  A compares the grid and 
random-walk data for site one, B compare the grid and random walk results for site two, C compares the grid and AGS 
data for site one, D compares the grid and AGS results for site two, E compares the random-walk and AGS data for site 
one, and F compares the random-walk and AGS results for site two.
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Fig. 7.  Graphical Comparison Between Methods by Utilizing One-to-one Plots.  A compares the grid and random-
walk data for site one, B compare the grid and random walk results for site two, C compares the grid and AGS data for 
site one, D compares the grid and AGS results for site two, E compares the random-walk and AGS data for site one, and F 
compares the random-walk and AGS results for site two.
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CONCLUSIONS
This  study  examined the  accuracy  of  an  automated  grain  sizing  method  as 

compared to standard grid and random-walk pebble counts.  Image analysis techniques 
were explored and optimized to enhance the ability of the AGS method to identify grains in 
the image.  The results indicate that the AGS method is at least as accurate in measuring 
grain size distributions as the standard random-walk pebble counts when compared to grid 
counts.  From the study, the following conclusions are made:

1. The grain size distribution of a streambed can be determined using the automated grain 
sizing method for rivers with similar sediment as that examined in this study.  It is 
expected that the grain size statistics derived from the AGS method will  have less 
variation in the derived grain size statistics than either grid or random-walk pebble 
counts, and will have an accuracy at least as good, if not better,  than random-walk 
pebble counts.

2. In comparison to grid count derived percentiles, the AGS method tends to match the 
median grain sizes, 50D , overestimate the size of the smallest size fractions, 16D≤ , 

and slightly underestimate the size of the largest size fractions, 84D≥ .  
3. The free software package ImageJ is sufficient for analyzing digital photographs of 

streambeds and in calculating accurate and precise results.  This helps make the AGS 
method an inexpensive sampling scheme that anyone can use.

4. Applying a median filter with a radius of 5 pixels and subtracting the background based 
on a  neighborhood operator with a radius of 15 pixels  improves the results  of the 
calculated grain size distribution.  However, leveling, or histogram equalization, has a 
minimal or no effect.  These findings are in accord with those of Graham et al. (2005a).

5. Determining a standard means for manually thresholding images will  require more 
research.   However,  auto  thresholding  can  presently  be  used  to  standardize the 
thresholding step in the image analysis process.  Based on the results of this research, 
selecting the auto thresholding value resulted in the AGS method being as precise and 
accurate as  the current standard methods;  therefore,  the auto  thresholding value is 
sufficient.

While the AGS method performed quite well, it does have limitations.  While not 
reported in this paper, the method was tested on images containing particles with a great 
deal of surface texture variation, such as pits, grooves, and holes and did not work well.  In 
these cases, significant over-segmentation of larger grains was severe enough to cause the 
method to inaccurately measure the larger percentiles.  Other than the physical constraints 
of deriving grain size distributions from images of the bed surface, the major issue that 
should be addressed in future research is finding ways to reduce over-segmentation of 
larger grains.  Additionally, AGS techniques should be compared to standard sampling 
methods for a  greater range of sediment sizes, shapes, and textures.  This will  better 
quantify the range of applicability of the AGS method and enable the development of 
sampling and processing protocols for various types, or families, or sediment mixtures.

ACKNOWLEDGEMENTS

14



The authors would like to thank Channing Santiago for his assistance in collecting 
field data.  The research study described herein was sponsored by the National Science 
Foundation under the Award No. EEC-0649163 and the Department of Civil Engineering at 
the University of Houston. The opinions expressed in this study are those of the authors 
and do not necessarily reflect the views of the sponsor.

REFERENCES
Abramoff,  M.D., Magelhaes, P.J.,  Ram,  S.J.  (2004),  "Image Processing  with  ImageJ".

Biophotonics International, volume 11, issue 7, pp. 36-42.
Bunte, K., Abt, S. R. (2001). “Sampling Surface and Subsurface Particle-Size Distributions 

in  Wadable Gravel- and Cobble-Bed Streams for  Analyses in  Sediment  Transport, 
Hydraulics,  and Streambed Monitoring,” United States Department  of  Agriculture, 
Forest Service, General Technical Report RMRS-GTR-74.

Butler, J. B., Lane, S. N., Chandler, J. H. (2001). “Automated Extraction of Grain-size Data 
from Gravel Surfaces Using Digital Image Processing,” Journal of Hydraulic Research, 
39(4), 519 – 529.

Church, M. A., McLean, D. G., Wolcott, J. F. (1987). “River Bed Gravels: Sampling and 
Analysis,” Sediment Transport in Gravel-Bed Rivers, in Thorne, C. R., Bathurst, J. C., 
Hey, R. D. (eds.), John Wiley and Sons, Chichester, p. 43 – 88.

Graham,  D.  J.,  Reid,  I.,  Rice,  S.  P.  (2005a).  “Automated Sizing of  Coarse-Grained 
Sediments: Image-Processing Procedures,” Mathematical Geology, 37(1), 1 – 28.

Graham, D. J., Rice, S. P., Reid, I. (2005b). “A Transferable Method for the Automated 
Grain  Sizing  of  River  Gravels,”  Water  Resources  Research,  41,  W07020, 
doi:10.1029/2004WR003868.

Kellerhals, R., Bray, D. I. (1971). “Sampling Procedures for Coarse Fluvial Sediments,” 
Proc. Am. Soc. Civ. Engrs, Journal of Hydraulics Division, 97(HY8), 1165 – 1180.

Sime, L. C., Ferguson, R. I. (2003). “Information on Grain Sizes in Gavel-bed Rivers by 
Automated Image Analysis,” Journal of Sedimentary Research, 73(4), 630 – 636

Wolman, M.G. (1954). “A Method of Sampling Coarse River-Bed Material,”  American 
Geophysical Union, Transactions, 35, 951-956.

15


